skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vasan_Gopala_Chandrasekaran, Keerthi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While quiescent galaxies have comparable amounts of cool gas in their outer circumgalactic medium (CGM) compared to star-forming galaxies, they have significantly less interstellar gas. However, open questions remain on the processes causing galaxies to stop forming stars and stay quiescent. Theories suggest dynamical interactions with the hot corona prevent cool gas from reaching the galaxy, therefore predicting the inner regions of quiescent galaxy CGMs are devoid of cool gas. However, there is a lack of understanding of the inner regions of CGMs due to the lack of spatial information in quasar-sightline methods. We present integral-field spectroscopy probing 10–20 kpc (2.4–4.8 Re) around a massive quiescent galaxy using a gravitationally lensed star-forming galaxy. We detect absorption from Magnesium (MgII) implying large amounts of cool atomic gas (108.4–109.3 M⊙ with T~104 Kelvin), in comparable amounts to star-forming galaxies. Lens modeling of Hubble imaging also reveals a diffuse asymmetric component of significant mass consistent with the spatial extent of the MgII absorption, and offset from the galaxy light profile. This study demonstrates the power of galaxy-scale gravitational lenses to not only probe the gas around galaxies, but to also independently probe the mass of the CGM due to it's gravitational effect. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025